

Deliverable 9.2.5

Project ID 654241

Project Title A comprehensive and standardised e-infrastructure for analysing
medical metabolic phenotype data.

Project Acronym PhenoMeNal

Start Date of the
Project

1st September 2015

Duration of the
Project

36 Months

Work Package
Number

9

Work Package
Title

WP9 Tools, Workflows, Audit and Data Management

Deliverable Title D9.2.5 Portal Virtual Machine Image that is capable of integrating
other PhenoMeNal-VMIs (in local federated clouds) and make all
functionality available via command-line, Web-APIs and graphical
user interfaces.

Delivery Date M24

Work Package
leader

IPB

Contributing
Partners

IPB, EMBL-EBI, UU

Authors Ken Haug, Sijin He, Pablo Moreno, Steffen Neumann, Daniel
Schober

 2

Abstract
The PhenoMeNal Portal contains the app-library, documentation and allows users to
deploy the PhenoMeNal application stack to public or private OpenStack environments
or the commercial cloud providers Google GCE and Amazon AWS. The production
container images are publicly available on https://portal.phenomenal-h2020.eu/.

Contents

1	 EXECUTIVE SUMMARY .. 3	

2	 CONTRIBUTION TOWARDS PROJECT OBJECTIVES ... 3	

3	 DETAILED REPORT OF THE DELIVERABLE .. 4	

3.1	 Overview and role of the portal .. 4	

3.2	 Deployment scenarios ... 5	

3.3	 Deployment of the portal through Helm charts into Kubernetes clusters 6	

3.4	 OpenStack compatibility layer .. 9	

3.5	 Packaging Application stacks for the EBI Cloud Portal .. 9	

3.5.1	 Portal usage .. 10	

3.6	 ELSI considerations for the PhenoMeNal Portal .. 10	

4	 DELIVERY AND SCHEDULE ... 11	

5	 CONCLUSION .. 11	

 3

1 EXECUTIVE SUMMARY
The PhenoMeNal Portal contains the app-library and allows users to deploy the PhenoMeNal
Workflow management infrastructure to public or private cloud providers. The detailed scope
and required functionalities were determined in a previous design workshop and were already
described in Deliverable 6.1. Initially, the portal was developed as a static website
(implementation details described in Deliverable 6.2), and has since been developed further.
We have now worked on packaging the PhenoMeNal Portal so that it can easily be installed on
any Kubernetes cluster, including the easily installable Minikube1. This means that an
administrator within a clinical institution can run the PhenoMeNal portal on top of a Minikube
installation (which is simple to setup on a single machine).

In this deliverable, we describe the current operational status of the virtual research
environment (VRE) portal and the set of infrastructure and GUI containers that constitute both
the frontend as well as the backend engines.

2 CONTRIBUTION TOWARDS PROJECT OBJECTIVES

This deliverable has contributed to the following project objectives

Objective 9.1 Specify and integrate software pipelines and tools utilised in the PhenoMeNal e-
Infrastructure into VMIs, adhering to data standards developed in WP8 and supporting the
interoperability and federation middleware developed in WP5.

Objective 9.2 Develop methods to scale-up software pipelines for high-throughput analysis,
supporting execution on e.g. local clusters, private clouds, federated clouds, or GRIDs.

Objective 9.3 Add quality control and quality assurance to pipelines to ensure high quality and
reliable data, keep an audit trail of intermediate steps and results.

1 https://github.com/kubernetes/minikube

 4

3 DETAILED REPORT OF THE DELIVERABLE

3.1 Overview and role of the portal

The PhenoMeNal Portal consists of the documentation (wiki), the app-library and the frontend
UI application to provide the ability for users to trigger the installation of a PhenoMeNal VRE
cloud deployment on the supported cloud providers.

The help pages at http://portal.phenomenal-h2020.eu/help are categorised into end user
focused documentation and -tutorials, and technical documentation targeting developers and
clinical IT managers. Documentation pages are created using markdown format on the project’s
GitHub wiki pages, publicly available at https://github.com/phnmnl/phenomenal-h2020/wiki,
which simplifies content creation and community contributions via pull requests. The Portal help
section mirrors this contents with regular periodicity.

The App Library showcases all the existing PhenoMeNal packaged tools that are available
through a PhenoMeNal VRE deployment. The content is dynamically parsed from the
README.md files created in the different PhenoMeNal containers on GitHub. The PhenoMeNal
Portal App Library component consumes these periodically and produces the corresponding
HTML output so that it can be viewed within the Portal.

The Portal (or CRE Portal) allows users to deploy the PhenoMeNal VRE (branded as
PhenoMeNal Cloud Research Environment, CRE2) infrastructure to public or private cloud
providers. After the initial authentication step through the Elixir AAI Single Sign-On (SSO)
system, the user is presented with the ability to deploy to the two major commercial cloud
providers (Amazon AWS and Google GCE) and to local (i.e. behind-clinical-firewall) OpenStack
installations. The interface allows the user to secure the environment provisioned with
username and password, in addition to manage and delete existing PhenoMeNal VRE
deployments. Figure 1 shows the functionality diagrammatically for a user with AWS credentials.

2 VRE and CRE are basically used synonymous, with the term ‘VRE’ appearing in the grant application
and deliverables (for consistency) and the term ‘CRE’ appearing in the implemented portal infrastructure.

 5

Figure 1: Involvement of the PhenoMeNal VRE Portal in the functional landscape of
PhenoMeNal. The main functionality of the PhenoMeNal VRE is to allow an external user with
cloud credentials to deploy a PhenoMeNal VRE cluster to the user’s cloud provider.

3.2 Deployment scenarios

Depending on the circumstances, such as ELSI considerations, clinical institutions may or may
not allow external entities to talk to their internal OpenStack installation. In the first case, where
the institution exposes at least the REST API endpoints of their OpenStack installation, the
external portal running at https://portal.phenomenal-h2020.eu/ can be used through the
OpenStack deployment option (see Figure 2, top).

In the second case, where these REST API endpoints are not exposed, the local OpenStack
installation can not be invoked through the external EBI TSI Portal, which executes the
commands for triggering the deployments, meaning that the external PhenoMeNal portal cannot
be used. For such a completely behind-firewall-portal solution we need to run a version of the
PhenoMeNal Portal functionality from within the network of that OpenStack installation (see
Figure 2, bottom).

This functionality has already been implemented through the existing command-line based
cloud-deploy-kubenow installation, which has also been used for deployments in the
german de.NBI cloud. For a more user-friendly option, we have started joint work with the TSI
team at EBI to containerize the EBI TSI Portal for local deployment, to be able to fully run
behind firewalls without resorting to the command line. Once this is in place, end users will be
able to deploy a local instance of the PhenoMeNal VRE through this local portal in a secure
manner, without any outbound network connection. Figure 2 below explains both use cases
diagrammatically.

 6

Figure 2: Deployment scenarios based on the networking policy of an institution. Top: simplest
case, in which the OpenStack REST Endpoint is accessible from outside the institutional
firewall, enabling both existing PhenoMeNal Portal and EBI TSI Portal to be used. Bottom:
OpenStack REST endpoint not accessible from outside the firewall, which requires internally
deployed versions of PhenoMeNal Portal and EBI TSI Portal. This second use case currently
requires command line usage, but we expect to have a fully deployable EBI Portal in the coming
months, which will complete our ability to run the PhenoMeNal Portal locally inside the user
premises and in a bring-the-compute-to-the-data fashion (see section on ELSI considerations
below).

3.3 Deployment of the portal through Helm charts into Kubernetes clusters

The PhenoMeNal portal helm chart, available at https://github.com/phnmnl/helm-charts/,
simplifies the deployment of the following different containers required for the portal:

● container-phenomenal-portal: for the front-end of the portal, including SSO
authentication, cloud deployment and facades for the other functionalities. Build history
of this container is available at
 https://phenomenal-h2020.eu/jenkins/job/container-phenomenal-portal/

 7

● container-phenomenal-portal-wiki: the backend functionality for the documentation. Build
history of this container is available at
 https://phenomenal-h2020.eu/jenkins/job/container-phenomenal-portal-wiki/

● container-phenomenal-portal-app-library: backend functionality for the App Library,
which showcases the PhenoMeNal containers. Build history of this container is available
at: https://phenomenal-h2020.eu/jenkins/job/container-phenomenal-portal-app-library/

● container-portal-metadata-backend: metadata backend to store user settings and status,
backed by a MySQL database which is deployed through the stable/mysql helm chart.
Build history of this container is available at:
 https://phenomenal-h2020.eu/jenkins/job/container-portal-metadata-backend/ .

Figure 3 below shows how the different components listed here work together for the operation
of the portal. In terms of release, the portal containers follow the same release procedure as
used for any other PhenoMeNal container: separate branches (development, release and
master) produce different tagged container images (development images, release candidate
and release images), all handled by our continuous integration system based on Jenkins.

portal

portal-

wiki

app-

backend-

Portal available at defined port
of nodes of the cluster.

User
settings,
 state.

Serves
documentati
on persisten

Serves App
Library
content

This image cannot
currently be
displayed. PhenoMeNal	GitHub	repos:	

Tools
Wiki

 Consumes Wiki
from PhenoMeNal
GitHub

 Consumes
 tools
 README

Kubernetes cluster or

 8

Figure 3: The different components of PhenoMeNal Portal in terms of containers, and how they
interact to provide the required VRE functionality.

For deploying the PhenoMeNal Portal on a Kubernetes cluster or a Minikube installation (on a
single machine), a configuration file (referred to as config_file.yaml later) like this is written:

galaxy_api_key: <galaxy-api-key-for-access-from-portal>
galaxy_url: "https://publicdev.phenomenal-h2020.eu"
image:
 repository: container-registry.phenomenal-h2020.eu/phnmnl/phenomenal-portal
 tag: latest
service:
 externalPort: 30758
backend:
 image:
 tag: latest
wiki:
 image:
 tag: latest
app_library:
 image:
 tag: latest
 resources:
 limits:
 cpu: 1
 memory: 1Gi
 requests:
 cpu: 100m
 memory: 128Mi
mysql:
 mysqlPassword: <a-password-for-mysql>
 persistence:
 enabled: true
 existingClaim: devel-portal-pvc
 subPath: mysql-devel

After having that config file, the PhenoMeNal helm chart repo is added to the machine with
access to a Kubernetes cluster (ie. can run kubectl towards the cluster) and with helm
(https://github.com/kubernetes/helm) installed:

$ helm repo add phenomenal https://phnmnl.github.io/helm-charts/

Then it can be invoked to launch the portal through:

$ helm install -f config_file.yaml phenomenal/portal

The helm install line above will deploy all the components of the portal, and requires that a
Persistent Volume Claim called “devel-portal-pvc” (the name can be changed in the config file)
exists to store the MySQL database content for the backend. These components can be listed
through the kubernetes dashboard graphically, or through the following two command calls:

 9

$ helm list
NAME REVISION UPDATED STATUS CHART NAMESPACE
contrasting-dragonfly 1 Sun Aug 20 17:16:39 2017 DEPLOYED portal-1.1.2 devel
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
contrasting-dragonfly-app-library-473572749-vvj22 1/1 Running 0 19h
contrasting-dragonfly-backend-1359285988-50ck0 1/1 Running 0 19h
contrasting-dragonfly-mysql-4207991844-l323c 1/1 Running 0 19h
contrasting-dragonfly-wiki-1799232970-ghlqn 1/1 Running 0 19h
phenomenal-portal-3774936324-795fs 1/1 Running 0 19h

Technical documentation of the PhenoMeNal Portal infrastructure can be found at
https://github.com/phnmnl/phenomenal-h2020/wiki/PhenoMeNal-Portal-Infrastructure

The setup described above is fully operational and was used to deploy both the current versions
of https://portal.phenomenal-h2020.eu/ and https://portaldev.phenomenal-h2020.eu/.

3.4 OpenStack compatibility layer

While the resource naming (flavours, networks etc) available at Amazon AWS or Google GCE
are known in advance, local OpenStack installations can be configured in different ways, not
known to the deployment portal a priori. The PhenoMeNal portal now provides a feature that
allows users to input their credentials to obtain the required OpenStack configuration metadata
by calling OpenStack APIs. For the previous release, users were required to obtain this
metadata information from OpenStack manually for OpenStack deployment. For this release,
this manual process has been automated that can easily fetch metadata information from
OpenStack. As a result, this feature can improve the user interface friendliness. We have
contributed all the code necessary to be able to interact with OpenStack installations to the TSI
API, so that also any application stack deployments beyond PhenoMeNal will be able to make
use of this feature.

3.5 Packaging Application stacks for the EBI Cloud Portal

This section summarises the TSI packaging documentation3, written by Dario Vianello et al.
from the TSI group at the EBI. The document is currently being transferred into a publicly
available document and also forms part of EMBL-EBI’s ongoing DevOps training offerings.

The EBI Cloud Portal has been built to provide an App-Store-like experience when deploying
application stacks to internal and public cloud providers, independently from their complexity. An
application stack is defined through a git repository with the following layout:

.
├── .gitignore
├── README.md
├── aws
│ ├── ansible -> ../gcp/ansible/
│ ├── deploy.sh

3 https://docs.google.com/document/d/1THnEt64EhBp4Dqh2E3nT8VKShDz-mQHw9MWnlLKeqko

 10

│ ├── destroy.sh
│ ├── state.sh
│ └── terraform
├── gcp
│ ├── ansible
│ ├── deploy.sh
│ ├── destroy.sh
│ ├── state.sh
│ └── terraform
├── manifest.json
└── ostack
 ├── ansible -> ../gcp/ansible/
 ├── deploy.sh
 ├── destroy.sh
 ├── state.sh
 ├── terraform
 └── volume_parser.py

The core manifest.json file resides at the root of this structure, followed by folders storing code
for each respective cloud provider. In this particular repo, the Ansible code is shared among the
cloud providers via symbolic/soft links, but this is not a strict requirement. The cloud-deploy-
kubenow4 repository also described in detail in D9.3 follows this layout.

3.5.1 Portal usage
Before deployments can be made, a user first has to configure the intended portal repositories.
These are application definitions which are later used for deployment purposes.

Steps:
1. User logs in to EBI Cloud Portal.
2. On the Dashboard user clicks on “Search Repositories” or selects “Repository” from

the left pane menu.
3. Click on the “+” button on the right side of the screen.
4. On the “Add application screen” user pastes public repo URL and clicks “Add”.
5. The application is added to your repository.

These steps are already preconfigured and hidden from the user in the PhenoMeNal Portal.
Other future projects adopting this approach with a single complex application stack, can start
off the cloud-deploy-kubenow repository, and replace the container images that define their
service landscape, e.g. with proteomics or transcriptomics specific applications.

3.6 ELSI considerations for the PhenoMeNal Portal

Clinical data managers need to be particularly aware of data security risks and even the term
‘cloud computing’ alone can raise doubts in anyone dealing with patient data in an ELSI
compliant manner. Unless explicit patient consent was provided, clinical data managers are
bound by contract to ensure complete privacy in order to protect patient rights and adhere to the
country of origins ELSI laws and resulting restrictions. Hence the PhenoMeNal project allows for

4 https://github.com/phnmnl/cloud-deploy-kubenow/

 11

a solution that enables ELSI relevant data to stay and be processed within the safe bounds of a
clinical firewall. This approach is here exemplified in a ‘bring the compute to the data’
philosophy and requires the clinicians to have access to a local cloud environment.

4 DELIVERY AND SCHEDULE
The deliverable was submitted on time.

5 CONCLUSION
The PhenoMeNal infrastructure is available to all end users from the VRE Portal. Users are
given the choice of deploying to select OpenStack environments or commercial cloud providers,
namely Google GCE and Amazon AWS. All documentation, videos and tutorials are available
from the respective sections of the PhenoMeNal Portal.

The VRE Portal gives users access to all workflows and containerised tools therein. The Portal
itself is also fully containerised and all container images are publicly available and fully
deployable on a larger production Kubernetes cluster or a simpler Minikube installation.

The VRE Portal has been developed using thorough usability testing to ensure interactions and
interfaces are as user centred as possible. A further full heuristic analysis of all available
features is scheduled for completion in Q3 2017.

The public Portal is available in production use on https://portal.phenomenal-h2020.eu/. More
adventurous users can test new pre-release features on https://portaldev.phenomenal-
h2020.eu/

